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Summary. We present a brief overview of heterogeneous computing, and develop a model 
for an idealized heterogeneous computer based on expected technology trends. Furthermore 
we discuss the impact of this model on computational and numerical algorithms. 

1 INTRODUCTION

A  heterogeneous  computer (HC)  is  a  tightly  coupled  system of  processing  units  with 
distinct characteristics. A modern desktop or laptop computer is an example of such a system, 
as most systems include both a task-parallel, multi-core CPU (Central Processing Unit) and 
one  or  more  data-parallel  processors  in  the  form  of  programmable  GPUs  (Graphical 
Processing Unit).  These different  units  communicate  over  a  fast  bus.  As of  2008 such a 
desktop-based  HC  can  deliver  around  five  teraFLOPS of  single-precision  floating  point 
performance,  compared  to  around  100  gigaFLOPS for  a  high-end,  quad-core  CPU. 
Heterogeneous computing is the strategy of deploying all of these processors within a single 
workflow. This allows each processor to perform the task to which it is best suited, thereby 
utilizing all resources in the system and increasing performance. 

The HC has emerged as a result of the increased complexity of CPUs. Relatively few of 
the transistors on a CPU die are dedicated to numerical computing, but are reserved for tasks 
such  as  instruction  reordering,  branch  prediction,  and  memory  cache.  This  makes  CPUs 
suitable for irregular workloads, such as those issued by a general-purpose operating system. 
Conversely,  a  data-parallel  architecture  dedicates  most  transistors  to  floating  point 
computations, and handles regular workloads efficiently, such as those encountered in most 
numerical  and graphical  computations.  Consequently,  the highest  performance  on a given 
transistor  and  power  budget  is  achieved  by  combining  both  of  these  approaches  in  one 
system, and distributing the workload accordingly. 

Future computer systems are expected to couple different types of processing units even 
more tightly than modern computers. The Cell BE1 already integrates both task- and data-
parallel processors on a single chip, and AMD is expected to follow suit with their  Fusion 
processor in 2009.  There are also initiatives, such as AMD's Torrenza and IBM and Intel’s 
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Geneseo, that will provide very high bandwidth between different types of processing units. 
Heterogeneous  computers  provide  high  performance  at  an  acceptable  price.  However, 

existing  mainstream  programming  languages  such  as  C(++)  and  Java  lack  support  for 
heterogeneous  computers.  Therefore,  existing  software  can  not  automatically  utilize  HCs. 
However, several new languages have been developed, most notably Nvidia's  CUDA2,  and 
Apple's  OpenCL. The latter is currently being standardized by the Khronos Group. Both of 
these languages are extensions of C(++), and existing software can therefore gradually be 
migrated to them.

2 THE IDEALIZED HETEROGENEOUS COMPUTER

There is currently a rapid ongoing development of computer architecture, and as described 
above, the different vendors have not yet converged to a common platform. We now present 
an idealized HC which will be used as a basis for discussing its impact on computational 
algorithms. This platform incorporates both processor technology and a memory model based 
on expected technology trends.  

We assume such an HC consist of several (4-10s) general-purpose processors, alongside 
numerous (100s-10000s) data-parallel processors. Both can process single-precision floating 
point numbers at twice the speed of double-precision. Our generalized machine has a NUMA 
(Non-Uniform Memory Architecture)  where  memory access  times  depends  highly  on the 
memory location relative to a processor. Furthermore,  the architecture has a very efficient 
hardware thread scheduler, making it possible to manage thousands of threads at the same 
time. This architecture is illustrated in Figure 1. 
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Figure 1: The idealized heterogeneous computer is equipped with several general-purpose processors and 
numerous data-parallel processors. Each processor has fast access to a local part of the global memory. 
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3 CONSEQUENCES FOR COMPUTATIONAL METHODS

The idealized HC described above has large implications for algorithm design. Notably, 
the  vast  computational  resources  available  make  it  crucial  to  design  algorithms  that  are 
parallel from the ground up. The classical tenets of parallel programming: identify separate 
tasks,  data-parallelism within  each  task,  and  synchronization  points,  still  apply.  Different 
sequential tasks are issued to the general-purpose processors. Inheritably parallel tasks, such 
as processing every element of a data set, is executed on the data-parallel processors. For an 
overview of successful data-parallel algorithms, see Luebke et. al.3

The NUMA memory layout  of HCs has probably an even bigger impact  on algorithm 
design.  The  expected  growth  in  processor  performance  seems  to  outpace  the  growth  of 
memory bandwidth, making future HCs even more memory starved than they are today. The 
flow of data through the computation must be organized so that for the most part processors 
access data that is close to it.  The biggest challenge may be to identify and minimize the 
dependency between data, even if it involves performing extra computations to avoid data 
synchronization.  This requires developers to understand and incorporate  the processor and 
memory topology into their algorithms. 

Even if developers rely on high-quality libraries to perform standard algorithms such as 
linear algebra and Fourier-transforms, they can not help with data dependency and locality. 
Hence,  they  can  not  solve  the  problem of  global  data-flow through a  large  computation. 
Developers have to a certain degree been spoiled by automatic cache hierarchies that have 
hidden much of the complexity of memory management.  Analysis  of data flow is hard to 
perform  at  compile-time,  and  in  the  long  term  we  might  see  systems  with  a  runtime-
environment that speculatively moves data around based on profiling information.

Another  aspect  of  the  architecture  is  the  added  cost  of  performing  double-precision 
calculations. Since such numbers requires twice the bandwidth and compute at half the speed 
of single-precision, mixed-precision algorithms will play a key role. Several such algorithms 
has  already  been  demonstrated,  see  Göddeke  et.  al.4 Furthermore  it  provides  ample 
opportunities for theoretical developments within stability and error analysis. 

Even if the above suggests a new approach to developing algorithms, there is still hope for 
existing programs. Cluster simulations based on message passing, such as MPI, has already 
identified synchronization points between data,  and can be modified to execute  on a HC. 
Existing sequential  methods provide a greater challenge,  but numerical  software can often 
gain dramatic increases in performance by refactoring just a few select parts5. However, in the 
end,  such approaches  will  most  likely reach  the limits  of  Amdahl’s  law:  The theoretical  
maximum speedup is  limited by the relative  time needed for  the non-parallel  part  of  the  
algorithm.

We expect a plethora of tools will emerge with the aim to help fully utilize HCs. However, 
even after several decades of compiler design, automated parallelization is still in its infancy. 
Automatically utilizing hundreds of processors with different capabilities is believed to be an 
even harder task. Such tools will therefore probably take the form of profilers and debuggers, 
aiding developers in identifying bottlenecks and data dependencies. There will be no tool that 
acts as a silver-bullet, automatically making sequential algorithm perform well on HCs. 

For  an  in-depth  analysis  of  research  challenges  as  we  move  to  HC architectures,  see 
Asanovic et. al.6
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4 CONCLUSION

The discussion above highlights many issues and challenges that heterogeneous computing 
presents.  However,  they  have  already  demonstrated  that  they  can  provide  an  enormous 
amount  of  floating-point  performance,  which  ultimately  can  lead  to  new  insight  and 
understanding.  Already,  the  world’s  fastest  computer,  IBM  RoadRunner,  is  built  using 
heterogeneous principles. We expect languages and tools to mature, and different hardware 
platforms to converge over time, ultimately making HCs easier to utilize. As an analogue, it 
took a decade from the first shared memory machines was available, until OpenMP became 
an industry standard. In the short- to mid term it is necessary for algorithms designers to have 
deep knowledge of the underlying hardware. We expect the most successful algorithms will 
be designed by cross-disciplinary teams, consisting of both domain specialists and computer 
scientists. 

The move to heterogeneous computing might  prove to be a radical  change in the way 
algorithms are developed. The mental model of a computation as a composition of functions 
could be a fallacy, instead it might be better to see computations as a largely disconnected 
flow of data.  This provides an ample opportunity for new research and novel algorithms, 
bringing computational methods into the era of heterogeneous computing.
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